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Abstract—Recent advances in smart sensor technology and
computer vision techniques have made the tracking of unmarked
human hand and finger movements possible with high accuracy
and at sampling rates of over 120 Hz. However, these new sensors
also present challenges for real-time gesture recognition due to
the frequent occlusion of fingers by other parts of the hand. We
present a novel multi-sensor technique that improves the pose
estimation accuracy during real-time computer vision gesture
recognition. A classifier is trained offline, using a pre-measured
artificial hand, to learn which hand positions and orientations
are likely to be associated with higher pose estimation error.
During run-time, our algorithm uses the pre-built classifier to
select the best sensor-generated skeletal pose at each time-step,
which leads to a fused sequence of optimal poses over time. The
artificial hand used to establish the ground truth is configured in a
number of commonly used hand poses such as pinches and taps.
Experimental results demonstrate that this new technique can
reduce total pose estimation error by over 30% compared to using
a single sensor, while still maintaining real-time performance.
Our evaluations also demonstrate that our approach significantly
outperforms many other alternative approaches such as weighted
averaging of hand poses. An analysis of our classifier performance
shows that the offline training time is insignificant and our
configuration achieves about 90.8% optimality for the dataset
used. Our method effectively increases the robustness of touchless
display interactions, especially in high-occlusion situations by
analyzing skeletal poses from multiple views.

Index Terms—Pose estimation, gesture recognition, occlusion,
multi-sensor, depth sensors, user evaluation.

I. INTRODUCTION

INTERACTING with computer interfaces through mid-air
hand gestures is emerging as an intuitive and effective

alternative to traditional touch-screen interfaces. For example,
interacting with medical displays via touch screens or a
traditional mouse and keyboard can present a major problem
for medical professionals wishing to keep equipment sterile.
Even in small clinical settings, examinations may often use
fluids, such as ultrasound conductive gel, which users do not
want to spread onto a physical interface through touch [1].

Mid-air hand gestures allow individuals to interact freely
with computer interfaces without keyboard, mouse or screen
contact. Instead, hand movements are tracked and interpreted
through Computer Vision (CV) techniques [2] [3] [4]. This
manuscript is focused on the domain of markerless mid-air
hand gestures (i.e., gestures that are tracked with computer

N. Rossol, I. Cheng (corresponding author), and A. Basu are with
the Department of Computing Science, University of Alberta, Edmonton,
AB T6G 2E8, Canada, Tel: 1 (780) 492-2285 Fax: 1 (780) 492-6393 e-
mail:nrossol@ualberta.ca; locheng@ualberta.ca; basu@ualberta.ca

Manuscript received February, 2015; revised July, 2015.

Fig. 1. An example setup used in our lab to capture a single hand pose from
two different viewing angles.

vision techniques alone and do not require the placement of
markers or tracking devices on the user’s hands). Markerless
approaches are much more desirable amongst users because
they allow for immediate interaction with a computer interface.
Time and resources are not wasted on additional set up or
calibration steps [5].

A. Problem

Previous work in markerless CV hand-tracking has made
use of colour and/or depth cameras (such as the Microsoft
Kinect [6]) in order to analyze either static or dynamic hand
gestures in real-time. Using raw depth/colour data, features
such as hand and finger positions/orientations can be extracted,
from which an estimate of the hand’s pose can be determined.
The main drawback of these past approaches is a large amount
of noise associated with the computed 3D fingertip positions.
Also, low sampling rates make it difficult to track quick hand
movements due to motion blur [7]. With the recent hardware
advances in new CV hand-tracking sensor systems (such as
the Leap Motion Sensor), millimeter-level precision can be
achieved for tracking a fully articulated hand skeleton at
sampling rates of over 120 frames per second [8]. However,
these latest sensors still have low pose estimation accuracy due
to occlusion. These situations frequently occur when the palm
is not directly facing the camera, or when performing certain
gestures, such as pinches, where one finger can be blocked by
another. These problems can disrupt accurate gesture interpre-
tation and lead to unintended computer operations.
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B. Proposed Solution

We introduce a novel technique to improve hand pose
estimation accuracy when using smart depth sensor technology
for tracking hand poses. In particular, our technique addresses
the issue of occlusion by using pose estimations from multiple
sensors placed at different viewing angles. One of the primary
advantages of our approach is to avoid fusing sensor data at the
3D depth-map level, which is not available from all modern
sensors such as the Leap Motion Sensor. Instead, we achieve
wider flexibility by intelligently analyzing each sensor sys-
tem’s independently derived skeletal pose estimations. A key
challenge that makes skeletal pose fusion especially difficult
is the tendency of the underlying pose estimation algorithms
being trapped in local minimas that can be substantially
different from each other. This explains why most classical
sensor fusion techniques, such as the Kalman filter [9], are
ineffective in this problem domain, because there is no useful
difference in the generated noise profiles to make a meaningful
quality evaluation of the sensor data. To address this issue,
we present a more robust strategy, which demonstrates that by
selecting an appropriately designed subset of the skeletal pose
estimation parameters, we can build an offline model. The
offline model can then be used in real-time to intelligently
select pose estimations, while still running at over 120 frames
per second. In our experimental prototype involving dual
sensors (Figure 1), we analyze the pose estimation accuracy
from different angles for a number of hand gestures typically
used to control displays (e.g., pinch, tap and open hand). In this
context we demonstrate that we are able to achieve a 31.5%
reduction in pose estimation error compared to using only a
single sensor. We are able to effectively eliminate the false
hand poses that interfere with accurate gesture recognition.

Our contributions are summarized below:
• We improve pose estimation accuracy of state-of-the-

art hand tracking systems through a novel technique for
analyzing skeletal hand poses from multiple sensors.

• We experimentally demonstrate how the improved pose
estimations can have a meaningful improvement on rec-
ognizing gestures used for controlling display interfaces.

II. RELATED WORK

A. Real Time Hand Pose Estimation

Computer vision based hand gesture recognition can be
broken down into two main categories: (i) model-based ap-
proaches concerned with pose estimation, and (ii) appearance
based approaches [10]. Model-based approaches involve de-
termining and tracking the entire articulated pose of the hand
as it moves, including the 3D position and orientation of the
wrist, and the deflection angles of every joint. On the other
hand, appearance-based approaches use other characteristics
in the captured images, such as the silhouette, contour, colour,
area, and pixel flow, to predict the intended hand gesture
[11] [12]. Despite the benefit of knowing the full pose of a
moving hand, most real-time systems make use of indirect cues
from appearance-based approaches due to processing time
constraints [13]. Early studies have shown that accurate CV

model-based hand pose estimation algorithms are too compu-
tationally expensive to run in real-time [6]. Fortunately, recent
hardware advances have helped deliver low-cost commercial
depth sensors, which support real-time and more precise hand
pose estimation.

In 2011, Oikonomidis et. al. [6] successfully developed an
accurate model-based approach for tracking the 3D position,
orientation, and full articulation of a hand at 15 Hz on high-
end hardware. Their approach used a combination of video and
depth images from a Microsoft Kinect sensor as input, which
were processed by a modified particle swarm optimization
(PSO) algorithm. Although still computationally intensive, the
15 Hz framerate can be achieved using only a single computer,
making use of a highly parallelized GPU implementation. The
authors then expanded their approach to include interactions
between two hands (2012 [14]).

In 2013, Keskin, et. al. [15] proposed a novel approach
for real-time hand pose recognition using Random Decision
Forests on a synthetically generated dataset of hand poses.
Their approach is similar to the approach used by Microsoft
Research on Kinect to create the real-time skeletal pose
recognition system [16]. By applying their classifier to label
each depth pixel, and then mean-shift to identify the position
of each part of the hand, full pose estimation is achieved. The
classifier is able to run at a rate of up to 30Hz. Although the
authors claimed that the technique should theoretically be able
to classify arbitrary hand poses given enough training data,
classification of only a few discrete poses (namely, hand poses
related to American Sign Language) were presented. This
limitation is also present in the real-time discrete hand pose
system proposed by Romero et. al. ( [17]). In contrast, we are
interested in the continuous space of all possible hand poses.
Our goal is to maximize flexibility and future extensibility of
our system.

A drawback of traditional approaches is that they are not
able to robustly capture small precise gestures (like quick
subtle finger-taps), due to their low sampling rates. It is
necessary to estimate human hand poses at high sampling rates
because of the rapid motions of the hand. Previous work has
reported that human hands can reach speeds of up to 5 m/s
and the wrist can reach rotational speeds of up to 300 degrees
per second during normal gestures [13]. Hand poses between
successive frames become increasingly uncorrelated to each
other as the hand moves faster [13]. The combination of
high movement speeds and low sampling rates often leads to
inaccurate gesture recognition. More accurate results can be
obtained from advanced sensors with higher sampling rates.
For this reason, we used the Leap Motion Sensor [8] to test
our method.

The Leap Motion Sensor is an example of a new generation
of computer vision based sensors that provides real-time
hand tracking and pose estimation. Unlike past Infrared Red
(IR) pattern light depth sensors (such as the first generation
Microsoft Kinect), or Time of Flight sensors (such as the Soft
Kinectic DepthSense Camera), the Leap Motion Sensor is able
to provide much higher 3D positional accuracy for hands and
fingertips (better than 1 millimeter of precision). Its sampling
rate exceeds 120 frames per second [8]. However, the sensor is
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Fig. 2. The hand poses and sensors are labeled from (a) to (j). In the pair of images on the left, the open hand pose (a) is visible by both sensors as (b)
and (c). The sensors give a similar pose estimation (d) and (e) in their local sensor coordinate spaces. In the pair of images on the right, a pinch pose (f) is
tested. The sensor on the left (g) has a fairly good view (g) and gives an estimate of (i). However, this pose is mostly occluded and seen as (h) from the right
side sensor, which leads to an estimate of (j). Note that the pinch pose has become an open hand, which disagrees with the left sensor.

unable to provide a full high-resolution depth map due to USB
bandwidth limitations. Also, its maximum effective tracking
distance is only around 50cm from the device.

B. Sensor Fusion

High-occlusion situations impose a major challenge for
analyzing hand poses. As previously mentioned, many skele-
tal hand pose estimation techniques follow particle-filter ap-
proaches, which can trap pose estimation algorithms in a local
minimum due to inadequate visible data to resolve ambiguity.
The pose can be incorrectly interpreted for a considerable
amount of time, or even indefinitely if the user’s hand con-
tinues to stay in a static pose. Typical real-time sensor fusion
techniques, such as the Kalman filter [9], are unsuitable in
this context. This is because the similar noise profiles of
correct and incorrect hand poses will result in equal evaluation
weighting, making it impossible to identify the correct pose
[18]. While using finger motion, such as the angular velocities
of finger joints, to predict future positions may be helpful, this
method is not feasible for many applications given rapid finger
movements.

Regardless of the underlying hand pose recognition tech-
nique, or sensor used, occlusion is a major problem when
using a single vision based sensor. We propose fusing data
from multiple sensors placed at different viewing angles, and
analyzing the skeletal poses directly instead of examining the
depth maps, because the latter may not always be available.
This is the case with the Leap Motion Sensor which does not
generate any depth maps or 3D point clouds.

We tested a two-sensor setup capturing a pose from two dif-
ferent viewing angles. When there is a disagreement between
the sensors at a particular time-step due to possible occlusion
blocking one of the views, our computation model evaluates
the different estimates and chooses the one that best fits the
continuous stream of skeleton poses. Figure 2 shows examples
of agreement and disagreement between the two sensors. Our
technique is intended to generate a fused sequence of optimal
poses over time, and we are able to demonstrate (in the
Evaluation Section) that this approach is more accurate than
the alternative of fusing the sensor images at each time-step.

C. Gesture Controlled Displays

Over the past decades there have been many studies on
hand tracking and touchless displays. Real-time hand tracking
is important in many applications, including medical ones.
A primary motivation in healthcare is reducing spreading
biological contamination by avoiding touching a device, and
the resulting time/cost savings from reduced sterilization [3].

One of the earlier works in CV-based gesture control of
medical displays was completed by Grange et. al. in 2004
[2]. Their system controlled computer mouse movements in
an operating room display via hand gestures. Stereo colour
cameras and a combination of static background subtraction
and pixel colour thresholding were used to track the user’s
hand positions in a 3D space. As the system did not track
fingers, virtual mouse clicks were performed by either pushing
the hand forward 20 cm, or holding it absolutely still for
several seconds. Similarly, the Gestix’s system developed in
2008 [4] used a nearly identical approach but did not control
a virtual cursor. Instead, the authors used communicative
gestures (such as hand swipes or circular motions) to perform
various tasks. As is typical in appearance-based approaches
that use colour information to segment the user’s hands, both
of these approaches are vulnerable to segmentation errors
caused by changes in illumination, shadows, or dynamic
backgrounds.

In 2011, Gallo et al. [19] proposed a Kinect-based interface
for visualizing medical images in a sterile surgery room. The
user was required to be standing, and using both hands for
interaction. The system tracked the 3D position of both hands
at 30 Hz and recognized the hand as either being in the open
or closed state. As with the previous works, the inability to
track the finger positions means that the gesture requires large
hand movements for recognition purposes, which can cause
the user physical fatigue over time [20]. Another limitation of
the system is that their method requires two hands to be free
for operation, which is not possible when one hand is used to
hold clinical tools.

Our system can be used with either one or both hands,
and is designed for gestures that are commonly adopted by
touchscreen interfaces.
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III. IMPLEMENTATION

Our multi-sensor skeletal pose estimation approach is com-
posed of the following steps:

1) First, we use a trained Support Vector Machine [21]
(SVM) model to intelligently determine the optimal pose
estimation from an array of sensors. We build this model
offline (only once) with a training set, which uses a
feature vector composed of a subset of each sensor’s
output.

2) Next, we convert each sensor’s pose output into a global
coordinate system, so that the poses of all of the fingers
are represented in a single unified space. Likewise, we
also keep the positions of all of the fingers in a local
hand coordinate system, which provides key information
for the pose estimation model.

3) Finally, the local hand pose information, and the global
hand pose information are input into our gesture recog-
nition model so that dynamic and static hand gestures
can be tracked.

An overview of these steps is shown in Figure 3.

Sensor 1 Pose 
Estimation

Sensor 2 Pose 
Estimation

Sensor N Pose 
Estimation

...

Optimal Pose 
Estimation

Transform to 
Global Space

Gesture 
Recognition

Transform to 
Local Hand 

Coord. Space 

Fig. 3. An overview of our real-time execution steps.

A. Sensor Array Setup

The goal of our implementation is to demonstrate the
feasibility of our algorithm. We tested our approach with a
two-sensor setup. As shown in Figures 1 and 4, our setup
involves two Leap Motion Sensors aligned at a 45 degree angle
to the table surface they are placed on. This angle is chosen
to make the sensor view angles orthogonal, to optimize the
amount of unique information available to each sensor during
situations of high occlusion. The point at which the center of
the field of view of both sensors intersects was set at 20cm for
our experiment, following the default pre-calibrated interaction
height for the Leap Motion Sensor.

One consideration when using multiple Leap Motion Sen-
sors for our configuration is that the IR (infrared) projectors
of one sensor can shine directly into the IR cameras of the
other, which can generate noisy data. This can be solved by
positioning the sensors outside the 150 degree field of view
of each other, or by placing a small non-reflective object
in-between the sensors, to prevent a direct line-of-sight. We
adopted the latter approach in our implementation. Based on
our test results, even if a pair of Leap Motion sensors shine
directly into one another, the additional noise in the pose
estimation was insignificant provided the automatic infrared
light compensation feature in the sensor configuration was
disabled.

45° 45°

Fig. 4. A diagram of our two-sensor setup. A small non-reflecting object is
placed between the sensors to prevent a direct line-of-sight.

B. Selecting Optimal Pose Estimations

We define the amount of pose estimation error as the sum of
the euclidean distances (in millimeters) of each fingertip from
its ground truth position. The positions are expressed locally
relative to the reported palm position and normal of the hand
(provided directly by the sensor data in our setup). That is,
if fi is a 3D vector representing the position of the fingertip
of the ith finger on a hand, and gi is the actual ground truth
position, we then define the error of a hand pose estimation
as:

E =

∑5
i=1 ||fi − gi||

5
(1)

Given a set of pose estimations from a sensor array (two
sensors with two independent estimations in our prototype),
the goal at each time-step is to select the single pose estimation
that has minimum error E. The main issue is that it is
impossible to track the difference in noise levels between
accurate and highly inaccurate pose estimations. As explained
previously, stable inaccurate pose estimations are a common
artefact of the traditional particle filter algorithms, which
makes it difficult to decide which sensor’s reading is more
trustworthy.

The novelty of our approach lies in intelligently determin-
ing which sensor is likely reporting the most accurate pose
estimation. Specifically, we observed that even in situations
with high occlusion and pose estimation error, the tracking
of the palm position and orientation often remained accurate.
We exploit this observation and build a SVM model that
learns which hand positions and orientations are likely to be



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2015 5

associated with higher pose estimation error. At run-time, our
algorithm computes a feature vector based on each sensor’s
reported hand position/orientation in the local sensor space.
This feature vector is then run through the pre-built classifier
in order to predict which sensor is likely providing the best
pose estimation. The selected pose is then passed along for
subsequent processing and gesture recognition.

For our two-sensor setup, each sensor’s feature vector is
composed of the following twelve floating point values per
pose estimation:

• Three (X,Y,and Z) values of the palm position relative to
the sensor.

• Three (X,Y,and Z) values of the palm plane normal
relative to the sensor.

• Three (X,Y,and Z) values of the “forward” direction of
the hand (i.e., the direction where the fingers point to
when extended).

• The local “Roll” rotation of the hand.
• The dot product between the palm normal and the direc-

tion the sensor is facing.
• Sensor Confidence Estimation. This value is a floating

point between 0 and 1 that is generated by an internal
proprietary part of the Leap Motion API. Its limitations
when used on its own are shown in the Evaluation section.

SVM was chosen as the classifier because almost all
of the features used have a geometric meaning. Thus, we
expect that in the higher dimensional space of the palm
position/orientation, it should be possible to find a relatively
good hyperplane that separates the spatial regions in which
each sensor would perform the best.

In order to build the training data for our model, we require
a set of feature vectors that are already pre-labeled to indicate
which sensor performed best. Several strategies are possible
for generating the training data. If the setup did not use IR
sensors (such as the Leap Motion), it may be possible to use an
IR-based motion capture rig such as OptiTrack1 with markers
on the fingertips during the training process. Alternatively,
data-gloves with only minimal error levels can be used if they
are not bulky enough to skew the results. In the Evaluation
Section, we demonstrate our approach through a third option,
where we use an articulated artificial hand model with a known
pose to represent ground truth for the training and evaluation
data.

As is typical of an SVM training approach, the time required
for training the offline model depends on the number of
training samples, and number of features used. In our imple-
mented prototype, the training time for 108 data points with
12 features each was less than 0.1 seconds when executing on
a regular computer.

C. Re-Projecting into Global and Local Spaces

After a hand pose is selected from the sensor array, it must
be converted into a unified global space to interpret meaningful
gestures or interactions. The matrix used to determine the
hand pose in the global space can be defined manually if

1http://www.optitrack.com

the placement of sensors is known precisely enough, such as
in our proposed two-sensor setup. In general, for an array of
multiple sensors, the user can use several static finger positions
visible from each sensor to build a set of 3D point clouds, and
then apply an ICP (Iterative Closest Point) algorithm [22]
to compute the specific matrix required to project the points
from each sensor’s local coordinate system into the global
coordinate system.

Similarly, we also compute a projection into a local hand
coordinate space to help in gesture recognition. If we consider
a hand with a normalized palm direction vector ĥN (i.e.,
normal to the plane of the palm and in the same direction
as the palm), and a normalized orthogonal forward vector ĥF ,
we can compute an additional basis vector ĥC for the local
hand coordinate system as the cross product of these two:

ĥC = ĥN × ĥF (2)

The main challenge in this step involves determining ĥF ,
the “forward” direction of a hand. Multiple definitions are
possible, but given the sensor data available, we define the
forward direction of the hand based on the mean direction
of all tracked fingers. This means that for n tracked fingers
with normalized direction vectors d̂0, d̂1, ..., d̂n, we compute
the unnormalized mean forward direction dM as shown in
Equation 3.

dM =

∑n
i=0 d̂i

n
(3)

We then project this computed vector onto the palm normal
plane (provided directly from the sensor data), and normalize
the result as shown in Equation 4.

ĥF =
dM − (ĥN · dM )ĥN

||dM − (ĥN · dM )ĥN ||
(4)

With the three basis vectors of the local hand coordinate sys-
tem computed, and the known position of the hand palm (T ),
we construct a matrix M that transforms fingertip positions
and direction vectors from the global coordinate system into
the local hand coordinate system.

M =


ˆhCx − ˆhNx − ˆhFx Tx
ˆhCy − ˆhNy − ˆhFy Ty
ˆhCz − ˆhNz − ˆhFz Tz
0 0 0 1


−1

(5)

Note that the directions of the hand normal and forward
vectors are inverted when used as basis vectors. This is because
the coordinate system of the global sensor space defines the
y axis as pointing upward, and the z vector as pointing
toward the user, whereas the palm normal is defined as facing
downward, and the fingers (used for the forward direction)
normally pointing away from the user.

The transformation is a 4 × 4 homogeneous matrix. This
means that 3D points are augmented with a “1” at the end
before multiplication, and direction vectors are augmented
with a “0.”
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D. Gesture Detection

Finally, after the hand pose is computed in the local and
global spaces, we perform gesture recognition on the computed
poses. We use gestures which are intuitive to the users. The
interactions are based on a combination of three basic move-
ments: air-taps, pinches, and dragging (or swiping). Finger
air-taps are analogous to clicking mouse buttons or tapping
a touch screen with the finger, but in mid-air. In our gesture
interfaces, this is used to select items. The air-tap was chosen
because it can be recognized robustly, and previous studies
have demonstrated that most users find the gesture easy to
learn and remember [23] [24]. Similarly, pinch gestures in
the air are essentially the same as those used on touchscreen
for zooming. Dragging (or swiping) refers to moving the hand
while at least one of the fingers is in the tap-down state
(i.e., performing the first half of an air-tap, but halting before
raising the finger). This is analogous to dragging file icons on
a computer interface while having a mouse button down, or
dragging objects across a touch screen display with a fingertip,
or swiping between pages displayed on a tablet computer. Our
framework also allows pinch-dragging.

In past studies, Hidden Markov Models (HMMs) have been
effective for gesture recognition in appearance-based systems
[25]. In our case, however, because the actual finger positions
are known with high accuracy, we use the current state of
the fingers directly in a Finite State Machine (FSM) model,
without the need for indirectly modelling hidden states. The
result is a computationally inexpensive direct analysis of the
finger states. Figure 5 shows a graph summarizing the state
transitions of our gesture interface design.

Start

Open

0 fingers past 
b th h ld

1+ fingers 
past 
threshold

Register Tap/ Pinch
Register 

Swipe Right
Register 
Swipe Left

Swiping 
Right

Swiping 
Left

Down/ 
Closed

sub‐threshold

x > threshold x < threshold

x < threshold x > threshold

Fig. 5. An overview of the state transitions of our gesture interface design.

1) Tap and Pinch Recognition: Using our local coordinate
system, it is easy to suggest that an air-tap is performed when
a finger moves to a local y value exceeding a threshold value.
However, observations show that false positives can occur
when the user’s hand is in a relaxed state, probably due to
fatigue over time as shown in Figure 6 c and d.

Thus, we adopt an adaptive approach, taking other fingers
into consideration, to compute the threshold y value of the
downward distance a finger must move in order to be classified
as an air-tap. It is computed using Equation (6):

Tf = DT (1 +WTmT ) (6)

Where Tf is the threshold value in millimeters (in the y
direction), that the finger f must move downward in order

Fig. 6. An overview of the tap recognition system, which illustrates the
importance of defining dynamic thresholds. The dashed magenta line indicates
the palm plane as reported by the sensor. The solid magenta line indicates the
side view of the offset plane parallel to the palm plane, but offset according
to the average displacement of the fingertips relative to the palm plane. The
solid green line indicates the threshold that must be exceeded to enter the tap
Down state. The dashed green line indicates the threshold that the finger must
be above to return to the Open state. a) ideal case where the user’s fingertips
are mostly lying in the palm plane, b) tap gesture is easy to recognize, c)
more realistic case where the user has taken a more relaxed hand posture
over time, d) tap gesture is not easy to recognize (bottom right).

to be recognized as an air-tap, DT is the default threshold
value for an air-tap assuming all the other fingers are in the
plane of the palm, and WT is a constant weighting factor. mT

is the mean y position of all other fingers besides the finger
f in our partial pose estimation model.

Once a finger has been recognized as being in the tapped
state, i.e., having passed below Tf , we require that it returns
to the palm plane through a different upper threshold value
Uf , in order to be recognized as the untapped motion, where:

Uf = c(Tf ), 0 < c < 1 (7)

Figure 6 illustrates the tap recognition corresponding to the
ideal and relaxed hand states.

A similar concept is used for pinch recognition, except
that the computational complexity of the palm plane and
neighboring fingers is reduced. For pinch recognition, we
define two thresholds: an enter threshold, and a larger release
threshold. When the Euclidean distance between the index
finger and thumb drops below the enter threshold (e.g., 15mm),
a pinch gesture will be recognized as “Started.” When the
distance between the two pinching fingers exceeds the exit
threshold (e.g., 25mm), the pinch is recognized as “Ended.”

2) Drag or Swipe Recognition: Drag gestures are recog-
nized as hand movements that occur when one or more fingers
are in the down position of an air-tap, or a pinch. Unlike
interaction on a touch screen, where the user drags virtual
items according to the position of their finger tip, in our model,
items are first selected by the user’s fingers, but then dragged
according to the hand position. This is due to the lack of
haptic feedback in mid-air gestures, which makes it difficult
to distinguish the movements of communicative tap gestures
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from the movements used to manipulate the position of a
virtual object. Our recognition technique is similar to using
mouse buttons for selections, and hand palm movements (i.e.,
mouse movements) to move objects on a computer screen.

IV. EVALUATION WITH GROUND TRUTH

In our experiments, ground truth values for hand poses
were determined by using an artificial hand model that was
manually placed into fixed and known poses. Since there are
a large number of usable hand poses that could be created,
we focus on tracking three hand poses that can replace certain
commands commonly used on touchscreen interfaces. These
three hand poses are:

1) An open hand.
2) A pinch gesture.
3) A tap gesture.

These gestures are shown in Figure 7.

Fig. 7. The three ground-truth hand poses tracked by our system.

The articulated artificial hand model has dimensions similar
to that of a male right hand. Fingers are approximately
between 7.0 cm to 10.5 cm in length, and the entire length
of the hand from the bottom of the palm to the tip of the
middle finger is approximately 20.5 cm when fingers are fully
extended. It was observed that the tracking accuracy of the
artificial hand was roughly equivalent to that of a normal
human hand.

In order to investigate the ability of our multi-sensor tech-
nique to track these hand poses when the hand is moving,
we fixed the hand position in the middle of the field of view
of both sensors (placed 20 cm away) and slowly rotated the
artificial hand counter-clockwise along the axis of the wrist
as shown in Figure 8. The rotation was paused every 10
degrees in order to record a measurement from each sensor.
This resulted in 36 pairs of pose estimations per gesture and
108 pairs of pose estimations in total.

We then computed the pose estimation error of each sensor
for all 108 cases. To train our computational model, we
constructed all 108 feature vectors and labelled every case
with the sensor that produced the lower pose estimation error.
Note that the average pose estimation performance of both
sensors were identical because both sensors eventually saw all

Fig. 8. The artificial hand model was mounted such that it was fixed in space
relative to the sensors and rotated along the axis of the wrist.

the exact same hand poses from the same distance and rotation
angle (but not at the same time). We evaluated the performance
of our model using a 10-fold cross-validation across all 108
data points, which is a standard approach commonly used by
classification techniques.

A. Performance Analysis

Overall, the experimental results indicated that our approach
reduced the total pose estimation error by 31.5% compared
to using only one sensor. We summarize the performance
comparisons in Table I and Table II.

The average pose estimation error (in millimeters) is calcu-
lated from the sum of the Euclidean distances (in millimeters)
of each fingertip from its ground truth position (Equation 1)
divided by the number of fingers. Using this metric, the worst
case and best case performances were found to be 21.45 mm
and 9.5 mm respectively (Table II). The worst case represents
the theoretical worst average pose estimation error that could
result from our approach. For it to occur, our classifier would
need to incorrectly choose the sensor with the worse pose
estimation every time (i.e., have 0% accuracy). Similarly, the
best case represents the result if our approach consistently
chose the sensor with the smaller pose estimation error. In this
context, our approach is able to achieve an optimal accuracy
of 90.8% on the average.

B. Comparison with Alternative Approaches

The result obtained from a single sensor shown in Table I
and Table II represents the average amount of pose estimation
error. Given our symmetric setup, it is also the amount of pose
estimation error expected if we choose randomly between the
two sensors. Although the mean sensor pose estimation error
was approximately 15.48 mm, there was quite a large vari-
ation in estimation error across the dataset with a maximum
recorded error of 114.24 mm, and the minimum recorded error
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Fig. 9. This plot shows the distribution of the level of disagreement between the sensors for correctly and incorrectly classified instances. Note that when
disagreement between the two sensors is high (probably due to occlusion), our approach was able to classify correctly (left half of plot). When the datapoint
was incorrectly classified, the difference between the sensor measurements tended to be small (right half of plot) and thus it did not add significant error by
choosing one sensor or the other. This shows that our approach can achieve high overall accuracy: .

of less than 0.07 mm. When the pose estimation error exceeded
30 mm, the sensor was producing a pose estimation that was
substantially different from the ground truth. There were about
22 such cases in our dataset of 108. Thus, we conclude that
occlusion can make the pose estimation performance of a
single sensor unreliable.

We also analyzed the performance of using unweighted
averaging to fuse pose estimations. That is, for each finger in
the local hand coordinate space, the final pose is the midpoint
between the two sensors’ estimates. This technique generates
results similar to those from a Kalman filter. Based on our
experiments, the method can help reduce the errors from
infrequent poor pose estimations. A drawback is that if the
system enters a state where the user’s hand pose is constantly
at a poor viewing angle for one sensor, the averaging will
increasingly reduce the overall pose estimation accuracy.

Another comparison was with using the Leap Motion Sen-
sor’s self-reported confidence score. In this measurement, the
sensor with the higher reading is selected based on their
reported confidences using a scale of 0 to 1. This approach
showed approximately 76% accuracy, suggesting the feasibil-
ity of including this parameter in the training model. However,
it is ineffective by itself in comparison to our approach,
which has better performance by taking the palm position and
orientation into account. Furthermore, not all depth sensors
provide self-reported confidence scores.

Our technique aims at generating a fused sequence of
optimal poses over time. We also analyze the “Weighted
Fusion” method, which fuses the sensor output at each time-
step. In this approach, we fit a logistic regression model to
the SVM outputs in order to produce probability estimates
indicating how confident the model was with each selection.
We then used these values directly to compute a combined
weighted average of the hand poses. The results showed that
the weighted fusion method did not perform as well as our

proposed approach. For example, in cases of high occlusion,
the weighted fusion method can have hand pose estimations
that are well over 10 cm away from the ground truth, while
our proposed method has higher accuracy (Table I and Table
II).

Our analysis using a paired one-tailed t-test showed that
there was a significant difference (α = 0.05) in the scores for
our approach (mean = 10.60, std. deviation = 7.65) compared
to using a single sensor (mean = 15.48, std. deviation = 11.65);
t=5.15, p <0.0001. Similarly, there was a significant difference
in our approach compared to using unweighted averaging
(mean = 13.10, std. deviation = 7.19); t = 3.93, p <0.0001
and also between using our approach compared to using the
sensor confidence (mean = 12.29, std. deviation = 8.82); t =
2.88, p = 0.0024.

Additionally, there was a significant difference between
using our weighted fusion approach (mean = 11.66, std.
deviation = 10.52) compared to using a single sensor; t =
3.94, p <0.0001, and also between using our weighted fusion
approach in comparison to using unweighted averaging; t =
2.15, p = 0.0171. However, the weighted fusion approach did
not show a significant difference from the sensor confidence
approach; t = 0.74, p = 0.231. In light of this, we recommend
the use of our original approach for most applications.

C. Analysis of Classification Performance

A unique aspect of our system’s performance is that while
our approach was about 90.8% optimal in terms of reducing
the mean pose estimation error, our classifier accuracy was
only 76.9% (i.e., 83 correctly classified instances out of the
total 108). Normally, one would expect that this would result
in the final performance being similar to around the 76.9%
value. In order to investigate this deviation, we compared the
difference in pose estimation error between the correctly and
incorrectly classified instances.
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TABLE I
EXPERIMENTAL RESULTS

Technique Finger Estimation Err. (mm) Std. Err

Single Sensor

Thumb 14.20 1.22
1st Finger 18.40 1.87
2nd Finger 15.51 1.55
3rd Finger 16.29 1.08
4th Finger 12.98 1.06
Mean 15.48 1.12

Averaging

Thumb 11.39 0.78
1st Finger 16.22 1.19
2nd Finger 13.27 1.00
3rd Finger 13.79 0.67
4th Finger 10.83 0.67
Mean 13.10 0.69

Sensor Confidence

Thumb 11.23 0.86
1st Finger 14.26 1.49
2nd Finger 12.61 0.97
3rd Finger 13.14 0.94
4th Finger 10.24 0.83
Mean 12.29 0.85

Weighted Fusion

Thumb 9.56 1.00
1st Finger 13.44 1.61
2nd Finger 12.89 1.54
3rd Finger 12.56 0.91
4th Finger 9.88 0.78
Mean 11.66 1.01

Our Approach

Thumb 9.53 0.85
1st Finger 10.09 0.97
2nd Finger 10.74 0.77
3rd Finger 12.49 0.88
4th Finger 10.14 0.84
Mean 10.60 0.74

TABLE II
OVERALL PERFORMANCE COMPARISON

Technique Mean Pose Estimation Error (mm) % Optimal

Worst Case 21.45 0%
Best Case 9.50 100%
Single Sensor 15.48 50%
Averaging 13.10 69.9%
Sensor Confidence 12.29 76.6%
Weighted Fusion 11.66 81.9%
Our Approach 10.60 90.8%

A large difference in the pose estimation error between the
two sensors for a datapoint typically indicates that the sensors
had a large disagreement between each other, and that likely
one of them (but perhaps both) was producing a very low
quality pose estimation. When the difference between the two
sensors was low, it indicates that both sensors were likely
producing very similar pose estimations, and thus the choice
of which sensor to use was less important. In our analysis,
we computed the difference in sensor pose estimation errors
for all our datapoints. The corresponding distributions are

shown in Figure 9. Note that (1) instances having a higher
median (difference in pose estimation error) are correctly
classified, and (2) cases with the worst outliers are also
classified correctly.

Our analysis shows that for the correctly classified instances,
the median difference between pose estimations was 11.44
mm. For the incorrectly classified instances, the median dif-
ference was only 4.47 mm. This verifies that in cases where
there was a large disagreement between the two sensors,
our approach often made the correct decision. The missed
instances were cases where the sensors only had a small
level of disagreement. This analysis shows that our approach
successfully eliminates the worst pose estimations in most
cases.

V. CONCLUSION

We presented a novel technique for improving full hand
pose recognition accuracy from multiple sensors at framerates
in excess of 120 pose estimations per second. Our technique
achieves this through a computational model, which is built
to intelligently select the more accurate pose estimation at
each time-step, based on a subset of the underlying pose
estimation data from each sensor. Our technique is most useful
for improving the quality of tracking accuracy for gesture-
controlled display interfaces, including medical interfaces. Our
experimental results show that we were able to reduce the
overall pose estimation error by over 30% in a two-sensor
setup relative to the single sensor approach.

Other techniques which attempt to evaluate high-resolution
images at high sampling rates from a large number of sensors
quickly run into hardware limitations, computational chal-
lenges and bandwidth constraints. In comparison, our approach
is able to scale better with a large number of sensors because
the data processed (i.e., the pose estimations) are at the skeletal
pose level and are much smaller. A key contribution of our
work is that it demonstrates the viability of combining pose
estimations from multiple sensor systems, even without the
presence of the underlying image data.
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